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1. Introduction
This code is taken from Dan Bernstein’s qhasm and implements a binary crit-bit (alsa known as PATRICA)

tree for NUL terminated strings. Crit-bit trees are underused and it’s this author’s hope that a good example
will aid their adoption.

Internal nodes in a crit-bit store a position in the input and two children. The position is the next location
in which two members differ (the critical bit). For a given set of elements there is a unique crit-bit tree
representing that set, thus a crit-bit tree does not need complex balancing algorithms. The depth of a
crit-bit tree is bounded by the length of the longest element, rather than the number of elements (as with
an unbalanced tree). Thus, if the crit-bit tree is defined on a finite domain (say, the set of 32-bit integers)
then the maximum depth is 32, since no two 32-bit integers can differ in the 33rd bit.

Crit-bit trees also support the usual tree operations quickly: membership-testing, insertion, removal,
predecessor, successor and easy iteration. For NUL terminated strings they are especially helpful since they
don’t require an expensive string comparison at each step.

This code, like Prof. Bernstein’s original code, is released into the public domain. It can be found at
http://github.com/agl/critbit.

2. Structures
We start with the structures used in the crit-bit tree. We’ll cover the semantics of each of the members of

these structures as need arises.

#define _POSIX_C_SOURCE 200112
#define uint8 uint8 t
#define uint32 uint32 t

format critbit0 node int
format critbit0 tree int
format uint8 int

#include <stdint.h>

#include <string.h>

#include <stdlib.h>

#include <sys/types.h>

#include <errno.h>

typedef struct {
void ∗child [2];

uint32 byte ;

uint8 otherbits ;
} critbit0 node;
typedef struct {

void ∗root ;
} critbit0 tree;



3. Membership testing.
The first function that we’ll deal with will be membership testing. The following function takes a tree, t,

and a NUL terminated string, u, and returns non-zero iff u ∈ t.

int critbit0 contains (critbit0 tree ∗t, const char ∗u)
{

const uint8 ∗ubytes = (void ∗) u;
const size t ulen = strlen (u);
uint8 ∗p = t~root ;

〈Test for empty tree 4 〉
〈Walk tree for best member 5 〉
〈Check for successful membership 7 〉
}

4. An empty tree
An empty tree simply is simply one where the root pointer is Λ, (that’s NULL for those who are new to

CWEB).

〈Test for empty tree 4 〉 ≡
if (¬p) return 0;

This code is used in section 3.

5. Searching the tree
Once we have established that the tree is not empty, it therefore has one or more members. Now we need

to distinguish between internal and external nodes.
Internal nodes are critbit0 node structures. They record that the tree diverges at some point. External

nodes are allocated strings. Thus, a tree with a single member is one where the root pointer points at an
allocated string. However, we need to be able to test a given pointer to know if it points at an internal or
external node. Several possibilities present themselves: a common structure as a prefix to both the internal
and external nodes, tags associated with every pointer, etc. In this case, we include the tag in the pointer
itself as the least-significant bit. We assume that both types of nodes are aligned to, at least, two bytes and
thus the LSB is free to be used as a tag bit. Internal nodes are tagged with a 1 and external nodes are
tagged with a 0.

When walking the tree we obviously want to break out when we reach an external node. Thus we use a
while loop that tests that the current node pointer is always pointing at an internal node.

〈Walk tree for best member 5 〉 ≡
while (1 & (intptr t )p) {

critbit0 node ∗q = (void ∗)(p− 1);

〈Calculate direction 6 〉
p = q~child [direction ];
}

This code is used in sections 3 and 8.



6. Encoding a location
Recall that a crit-bit tree works by encoding the bit-number that differs at each branch in the tree. The

obvious way to do this would either be with a single number (the number of bits from the beginning of the
string), or with a (byte number, bit number ∈ [0..7]) pair.

However, for reasons that should become clear later, here we encode it as a byte number and a single byte
where all the bits except the critical bit are true. By performing a bitwise OR with the correct byte there
are only two results: If the byte did not have the critical bit set, the result is the same as the mask. If it did,
the result is all ones. The latter case is the unique 8-bit value where adding one and right-shifting 8 places
results in a 1. We use this to obtain the direction.

Note also that our strings are treated as if they had an infinitely long suffix of NUL bytes following them.
Thus, if the critical bit is beyond the end of our string, we treat it as if it had a zero bit there.

〈Calculate direction 6 〉 ≡
uint8 c = 0;

if (q~byte < ulen ) c = ubytes [q~byte ];

const int direction = (1 + (q~otherbits | c))� 8;

This code is used in section 5.

7. The final test
Once we have reached an external node we can only conclude that certain bits of the string are shared

with a string in the tree. We still need to test the best match to make sure that it’s correct. If the test fails,
however, we can conclude that the string is not in the tree.

Note that the pointer cannot be Λ. We tested that the root pointer was not Λ at the start of the function
and, if an internal node had a Λ pointer then the tree would be invalid - that internal node should be
removed.

〈Check for successful membership 7 〉 ≡
return 0 ≡ strcmp(u, (const char ∗) p);

This code is used in section 3.



8. Inserting into the tree.
This is a more complex function. It takes a tree, t, and possibly mutates it such that a NUL terminated

string, u, is a member on exit. It returns:{
0 if out of memory
1 if u was already a member
2 if t was mutated successfully

Note that the section for walking the tree is the same as before and is not covered again.

int critbit0 insert (critbit0 tree ∗t, const char ∗u)
{

const uint8 ∗const ubytes = (void ∗) u;
const size t ulen = strlen (u);
uint8 ∗p = t~root ;

〈Deal with inserting into an empty tree 9 〉
〈Walk tree for best member 5 〉
〈Find the critical bit 10 〉
〈 Insert new string 13 〉
return 2;
}

9. Inserting into an empty tree
Recall that an empty tree has a Λ root pointer. A singleton tree, the result of inserting into the empty

tree, has the root pointing at an external node - the sole member of the tree.
We require the ability to malloc a buffer with alignment 2 and so use posix memalign to allocate memory.

〈Deal with inserting into an empty tree 9 〉 ≡
if (¬p) {

char ∗x;
int a = posix memalign ((void ∗∗) &x, sizeof (void ∗), ulen + 1);

if (a) return 0;
memcpy (x, u, ulen + 1);
t~root = x;
return 2;
}

This code is used in section 8.

10. Finding the critical bit

〈Find the critical bit 10 〉 ≡
〈Find differing byte 11 〉
〈Find differing bit 12 〉

This code is used in section 8.



11. Finding the differing byte
Now that we have found the best match for the new element in the tree we need to check to see where the

new element differs from that element. If it doesn’t differ, of course, then the new element already exists
in the tree and we can return 1. Remember that we treat strings as if they had an infinite number of NULs
following them and that the best match string might be longer than u.

While calculating the differing byte we also calculate newotherbits , the XOR of the differing byte. This
will become clear in the next section.

〈Find differing byte 11 〉 ≡
uint32 newbyte ;
uint32 newotherbits ;
for (newbyte = 0; newbyte < ulen ; ++newbyte ) {

if (p[newbyte ] 6= ubytes [newbyte ]) {
newotherbits = p[newbyte ]⊕ ubytes [newbyte ];
goto different byte found ;

}
}
if (p[newbyte ] 6= 0) {

newotherbits = p[newbyte ];
goto different byte found ;
}
return 1; different byte found :

This code is used in section 10.

12. Finding the differing bit
Once we have the XOR of first differing byte in newotherbits we need to find the most significant differing

bit. We could do this with a simple for loop, testing bits 7..0, instead we use the following trick:
We recursively fold the upper bits into the lower bits to yield a byte x with all true bits below the most

significant bit. Then x &∼(x� 1) yields the most significant bit.
Once we have this value, we invert all the bits resulting in a value suitable for our otherbits member.

〈Find differing bit 12 〉 ≡
newotherbits |= newotherbits � 1;
newotherbits |= newotherbits � 2;
newotherbits |= newotherbits � 4;
newotherbits = (newotherbits &∼(newotherbits � 1))⊕ 255;

uint8 c = p[newbyte ];
int newdirection = (1 + (newotherbits | c))� 8;

This code is used in section 10.

13. Inserting the new node

〈 Insert new string 13 〉 ≡
〈Allocate new node structure 14 〉
〈 Insert new node 15 〉

This code is used in section 8.



14. Allocating a new node
This is obviously fairly pedestrian code. Again, we use posix memalign to make sure that our node

structures have an alignment of at least two. We store the new copy of the string into the correct child
pointer and save the other for when we have worked out where to insert the new node

〈Allocate new node structure 14 〉 ≡
critbit0 node ∗newnode ;

if (posix memalign ((void ∗∗) &newnode , sizeof (void ∗), sizeof (critbit0 node))) return 0;

char ∗x;

if (posix memalign ((void ∗∗) &x, sizeof (void ∗), ulen + 1)) {
free (newnode );
return 0;
}
memcpy (x, ubytes , ulen + 1);
newnode~byte = newbyte ;
newnode~otherbits = newotherbits ;
newnode~child [1− newdirection ] = x;

This code is used in section 13.



15. Inserting a new node in the tree
Here we must recall that, for a given set of elements, there is a unique crit-bit tree representing them.

This statement needs a little bit of qualification because it also requires that we define a total ordering of
crit-bits.

Consider the set of bitstrings {000, 001, 101}, inserted into a crit-bit tree in that order. One could imagine
the resulting tree looking like this:

root

3rd

000 1st

001 101

(Where internal nodes are shaded light gray and contain the critical bit, counting from the left.)
That would be a valid tree for searching as far as our searching algorithm goes, but it does make a mess

of predecessor and successor operations when the forks might not test the bits in any special order.
So, in short, we need the order of the crit-bits to match the lexicographical order that we expect the

predecessor and successor operations to follow. Thus, inserting the new node in the tree involves walking
the tree from the root to find the correct position to insert at.

We keep track of the pointer to be updated (to point to the new internal node) and, once the walk has
finished, we can update that pointer.

〈 Insert new node 15 〉 ≡
void ∗∗wherep = &t~root ;

for ( ; ; ) {
uint8 ∗p = ∗wherep ;

if (¬(1 & (intptr t )p)) break;

critbit0 node ∗q = (void ∗)(p− 1);

if (q~byte > newbyte ) break;
if (q~byte ≡ newbyte ∧ q~otherbits > newotherbits ) break;

uint8 c = 0;

if (q~byte < ulen ) c = ubytes [q~byte ];

const int direction = (1 + (q~otherbits | c))� 8;

wherep = q~child + direction ;
}
newnode~child [newdirection ] = ∗wherep ;
∗wherep = (void ∗)(1 + (char ∗) newnode );

This code is used in section 13.



16. Deleting elements.
This function takes a tree, t, and a NUL terminated string, u, and possibly mutates the tree such that

u /∈ t. It returns 1 if the tree was mutated, 0 otherwise.

int critbit0 delete (critbit0 tree ∗t, const char ∗u)
{

const uint8 ∗ubytes = (void ∗) u;
const size t ulen = strlen (u);
uint8 ∗p = t~root ;
void ∗∗wherep = &t~root ;
void ∗∗whereq = 0;
critbit0 node ∗q = 0;
int direction = 0;

〈Deal with deleting from an empty tree 17 〉
〈Walk the tree for the best match 18 〉
〈Check the best match 19 〉
〈Remove the element and/or node 20 〉
return 1;
}

17. Deleting from the empty tree
Since no element is the member of the empty tree, this is a very easy case: we can just return 0.

〈Deal with deleting from an empty tree 17 〉 ≡
if (¬p) return 0;

This code is used in section 16.



18. Finding the best candidate to delete
Walking the tree to find the best match for a given element is almost the same as the two previous versions

that we’ve seen. The only exception is that we keep track of the last jump to an internal node in whereq .
Actually, we keep track of a pointer to the last pointer that got us to an internal node.

To see why, consider the typical case:
root

x

. . . y

. . . 1100

whereq

Here we wish to remove 1100, however if we left its parent with a single child pointer, that would make
the parent nothing more than a bump in the road - it should also be removed. Thus we need a pointer to
the grandparent in order to remove both the string and the internal node that pointed to it.

〈Walk the tree for the best match 18 〉 ≡
while (1 & (intptr t )p) {

whereq = wherep ;
q = (void ∗)(p− 1);

uint8 c = 0;

if (q~byte < ulen ) c = ubytes [q~byte ];
direction = (1 + (q~otherbits | c))� 8;
wherep = q~child + direction ;
p = ∗wherep ;
}

This code is used in section 16.

19. Checking that we have the right element
As usual, we have now found the best match, an external node, but we still need to compare the strings to

check that we actually have a match. If we don’t, then the element cannot be in the tree and we can return
0. Otherwise, the external node is no longer useful and can be freed.

〈Check the best match 19 〉 ≡
if (0 6= strcmp(u, (const char ∗) p)) return 0;
free (p);

This code is used in section 16.



20. Removing the node
We now have to deal with two cases. The simple case is as outlined in the diagram above: we remove the

parent node and point the grand parent to to other child of the parent.
We also have to keep in mind that there might not be a grandparent node. This is the case when the tree

only has one element. In this case, we remove that element and set the root pointer to Λ.

〈Remove the element and/or node 20 〉 ≡
if (¬whereq ) {
t~root = 0;
return 1;
}
∗whereq = q~child [1− direction ];
free (q);

This code is used in section 16.



21. Clearing a tree.
Clearing a tree (freeing all members) brings us our first code for walking the whole tree rather than just

tracing a path through it.
So, the critbit0 clear function takes a tree, t, and frees every member of it, mutating the tree such that it

is empty on exit.

static void traverse (void ∗top)
{
〈Recursively free current node 22 〉
}
void critbit0 clear (critbit0 tree ∗t)
{

if (t~root ) traverse (t~root );
t~root = Λ;
}

22. Recursively clearing the tree
Each pointer in the tree has to be tested to see if it’s a pointer to an internal node (a critbit0 node) or

to a malloced string. If it’s a node, we need to recursively free its children.

〈Recursively free current node 22 〉 ≡
uint8 ∗p = top ;

if (1 & (intptr t )p) {
critbit0 node ∗q = (void ∗)(p− 1);

traverse (q~child [0]);
traverse (q~child [1]);
free (q);
}
else {

free (p);
}

This code is used in section 21.



23. Fetching elements with a given prefix.
One of the operations which crit-bit trees can perform efficiently that hash tables cannot is the extraction

of the subset of elements with a given prefix.
The following function takes a tree, t, and a NUL terminated string, prefix . Let S ⊆ t where x ∈ S iff

prefix is a prefix of x, then ∀x : S. handle is called with arguments x and arg . It returns:
0 if handle returned 0
1 if successful
2 if handle returned a value /∈ [0, 1]

(Note that, if handle returns 0, the iteration is aborted)

static int allprefixed traverse (uint8 ∗top , int(∗handle )(const char ∗,void ∗),void ∗arg )
{
〈Deal with an internal node 26 〉
〈Deal with an external node 27 〉
}
int critbit0 allprefixed (critbit0 tree ∗t, const char ∗prefix , int(∗handle )(const char ∗,void ∗),void

∗arg )
{

const uint8 ∗ubytes = (void ∗) prefix ;
const size t ulen = strlen (prefix );
uint8 ∗p = t~root ;
uint8 ∗top = p;

if (¬p) return 1; /∗ S = ∅ ∗/
〈Walk tree, maintaining top pointer 24 〉
〈Check prefix 25 〉
return allprefixed traverse (top , handle , arg );
}

24. Maintaining the top pointer
The top pointer points to the internal node at the top of the subtree which contains exactly the subset of

elements matching the given prefix. Since our critbit values are sorted as we descend the tree, this subtree
exists (if the subset is non-empty) and can be detected by checking for the critbit advancing beyond the
length of the prefix.

〈Walk tree, maintaining top pointer 24 〉 ≡
while (1 & (intptr t )p) {

critbit0 node ∗q = (void ∗)(p− 1);
uint8 c = 0;

if (q~byte < ulen ) c = ubytes [q~byte ];

const int direction = (1 + (q~otherbits | c))� 8;

p = q~child [direction ];
if (q~byte < ulen ) top = p;
}

This code is used in section 23.



i: 25.
intptr t : 5, 15, 18, 22, 24, 26.
memcpy : 9, 14.
newbyte : 11, 12, 14, 15.
newdirection : 12, 14, 15.
newnode : 14, 15.
newotherbits : 11, 12, 14, 15.
NUL: 1, 3, 6, 8, 11, 16, 23.
otherbits : 2, 6, 12, 14, 15, 18, 24.
p: 3, 8, 15, 16, 22, 23.
posix memalign : 9, 14.
prefix : 23.
q: 5, 15, 16, 22, 24, 26.
root : 2, 3, 8, 9, 15, 16, 20, 21, 23.
strcmp : 7, 19.
strlen : 3, 8, 16, 23.
t: 3, 8, 16, 21, 23.
top : 21, 22, 23, 24, 26, 27.





〈Allocate new node structure 14 〉 Used in section 13.

〈Calculate direction 6 〉 Used in section 5.

〈Check for successful membership 7 〉 Used in section 3.

〈Check prefix 25 〉 Used in section 23.

〈Check the best match 19 〉 Used in section 16.

〈Deal with an external node 27 〉 Used in section 23.

〈Deal with an internal node 26 〉 Used in section 23.

〈Deal with deleting from an empty tree 17 〉 Used in section 16.

〈Deal with inserting into an empty tree 9 〉 Used in section 8.

〈Find differing bit 12 〉 Used in section 10.

〈Find differing byte 11 〉 Used in section 10.

〈Find the critical bit 10 〉 Used in section 8.

〈 Insert new node 15 〉 Used in section 13.

〈 Insert new string 13 〉 Used in section 8.

〈Recursively free current node 22 〉 Used in section 21.

〈Remove the element and/or node 20 〉 Used in section 16.

〈Test for empty tree 4 〉 Used in section 3.

〈Walk the tree for the best match 18 〉 Used in section 16.

〈Walk tree for best member 5 〉 Used in sections 3 and 8.

〈Walk tree, maintaining top pointer 24 〉 Used in section 23.
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